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Relevance of the Problem

A woman's lifetime risk of Her chance of dying from In 2022, there were 206,956
ovarian canceris 11in 91 itis1in143 OC deaths worldwide

American Cancer Society. (2024, January 19). Ovarian Cancer Statistics [ How Common is Ovarian Cancer. Www.cancer.org.
https.//www.cancer.org/cancer/types/ovarian-cancer/about/key-statistics.html



Relevance of the Problem

In a study of 1,577 patients, doctors used
a method called frozen section analysis
to diagnose Ovarian Tumours

20% of the time, tumors were
under-diagnosed
10.5% were over-diagnosed

Huang, Z., Li, L., Li, C., Ngaujah, S., Yao, S., Chu, R., Xie, L., Yang, X., Zhang, X., Liu, P., Jiang, J., Zhang, Y., Cui, B., Song, K., & Kong, B. (2018). Diagnostic accuracy of frozen
section analysis of borderline ovarian tumors: a meta-analysis with emphasis on misdiagnosis factors. Journal of Cancer, 9(16), 2817-2824. https://doi.org/10.7150/jca.25883



Problem Statement

e Distinguishing benign from malignant ovarian tumors is difficult. Frozen section analysis shows only
69.2% accuracy for borderline tumors, with 20.2% under-diagnosed and 10.5% over-diagnosed.

o Missing a malignant tumor can delay treatment and worsen outcomes. Over-diagnosis can lead to

unnecessary surgeries, causing avoidable risks and reduced quality of life.

o Current tools like imaging and CA-125 test lack precision. Even with combined markers, t
predictive value remains low, highlighting the need for multi-model, data-driven approac

Abramowicz, J. S., Condous, G., & Timmerman, D. (2018). Ovarian mass-differentiating benign from malignant. Why the International Ovarian Tumour Analysis
rules should be implemented in Australasia. Australasian Journal of Ultrasound in Medicine, 21(3), 121-124. https://doi.org/10.1002/ajum.12108
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Literature Review




Paper 1:

Context - This study aimed to develop a deep learning
model using grayscale and color Doppler ultrasound
iImages, comparing its performance with the O-RADS
and expert assessments

Data - Analysis of 422 women with ovarian tumors,

utilising grayscale and colour Doppler ultrasound images.

ML Approach - Two ResNet-based models—
decision fusion and feature fusion

Gaps - Solely on imaging data, without incorporating
other clinical information such as serum markers or
patient history

Wang, Z., Luo, S., Chen, J., Jiao, Y., Cui, C., Shi, S., Yang, Y., Zhao, J., Jiang, Y.,
Zhang, Y., Xu, F., Xu, J., Lin, Q., & Dong, F. (2024). Multi-modality deep learning model
reaches high prediction accuracy in the diagnosis of ovarian cancer. IScience, 27(4),
109403. https://doi.org/10.1016/].isci.2024.109403

Paper 2:

Context - The study assessed a multi-modal deep
learning model combining ultrasound, menopausal
status, and serum indicators to classify ovarian tumors.

Data - 1,054 cases (699 benign, 355 malignant) using
retrospective ultrasound and clinical data.

ML Approach - Three ResNet-50 models to evaluate how
adding clinical data improves ovarian tumor classification.

Gaps - The study lacked advanced fusion
techniques and broad validation across diverse
clinical settings.

Chen, H., Yang, B.-W., Qian, L., Meng, Y.-S., Bai, X.-H., Hong, X.-W., He, X., Jiang, M.-J., Yuan,
F., Du, Q.-W., & Feng, W.-W. (2022). Deep Learning Prediction of Ovarian Malignancy at US
Compared with O-RADS and Expert Assessment. Radiology, 304(1), 106-113. https://
doi.org/10.1148/radiol.211367



Rationale

—~

Ovarian cancer detection is inherently multi-modal — it benefits from combining
clinical, tumor markers and haematological features. A hybrid model can overcome
the limitations of any single data source.

For example, a rise in CA-125 could trigger a closer look at haematological indices
(like a high neutrophil-to-lymphocyte ratio) which together raise your suspicion.

By fusing modalities, the model can learn these conditional inferences. Research
strongly supports multi-modal integration: integrated models using clinical data,
tumor markers, and haematological data can outperform models based on any
single type of data. Numerous reviews show that multi-omic approaches like this
consistently outperform single-source models.

Hatamikia, S., Nougaret, S., Panico, C., Avesani, G., Nero, C., Boldrini, L., Sala, E., & Woitek, R. (2023). Ovarian cancer beyond imaging:
integration of Al and multiomics biomarkers. European Radiology Experimental, 7(1). https://doi.org/10.1186/s41747-023-00364-7




USING MACHINE LEARNING TO PREDICT
OVARIAN CANCER

Nature

The dataset
comprises clinical,
hematological, and
tumor marker data
from 349 Chinese
female patients, aimed
at differentiating
between benign
ovarian tumors and
ovarian cancer.

Reason

It offers a diverse set
of 49 features across
multiple domains
(tumor markers,
clinical and
hematological data),
making it ideal for
training and evaluating
multi-model machine
learning architectures.

Collection

Data were retrospectively
collected from hospital
records, encompassing
demographics, blood
tests, general chemistry,
and tumor markers and
shared under a CC BY-NC
3.0 license maintaining
patient privacy and
restricted to non-
commercial usage.

Size & Features

It includes 349 patient
records with 49
variables, covering
blood routine tests,
general chemistry, and
tumor markers.

Mi, Qi; Jiang, Jingting; Znati, Ty; Fan, Zhenjiang; Li, Jundong; Xu, Bin; Chen, Lujun; Zheng, Xiao; Lu, Mingyang (2020), “Data for: USING MACHINE LEARNING TO
PREDICT OVARIAN CANCER”, Mendeley Data, V11, doi: 10.17632/th7fztbrv9.11
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Feature Preprocessing &

Missing-value handling Scaling
Missing entries in each column were In both modeling models we've normalized
imputed with the column mean all numeric features with MinMaxScaler
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Data Visualisations

Target Variables Distribution

Distribution of Target Variable (TYPE)
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Data Visualisations
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Tumor Markers

Correlation Heatmap of Tumor Markers

Haematological Features

Correlation Heatmap of Hematological Features
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Naive methods 'g

Deep Learning
(MLP)

e Two separate MLPs: Clinical + Hematological labs (43
features) & Tumor Markers (6 biomarkers)

Why:
e Captures complex, non-linear interactions and hierarchies
iIn the data.

e Early-stopping, dropout, L2 reqgularization to combat
overfitting on a small cohort.

How they work:

e Stacked dense layers (128->64->32) with ReLU
activations

e Dropout + batch-norm + L2 shrinkage

e Backprop on binary cross-entropy (or focal loss with
tumor markers)

Gradient Boosting Ensemble
(XGBoost + CatBoost Soft Voting)

e Independently tuned XGBoost & CatBoost via
randomized CV on balanced-accuracy, then average
their predicted probabillities.

Why:
e Built-in regularization, missing-value handling, and class-
imbalance controls (scale_pos_weight, per-leaf weights).

e« Ensembling smooths out each model’s high-variance
mistakes.

How they work:
e Greedy, additive tree construction on residual gradients
o Per-tree shrinkage & regularization (L1/L2)

e Each model outputs P(cancer) - final P = average -
thresholded for label
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Naive methods 'g

Deep Learning Gradient Boosting Ensemble
(MLP) (XGBoost + CatBoost Soft Voting)

e Two separate MLPs: Clinical + Hematological labs (43 e Independently tuned XGBoost & CatBoost via
features) & Tumor Markers (6 biomarkers) randomized CV on balanced-accuracy, then average
their predicted probabilities.

e Test Accuracy (Deep Learning): 84.29% e Test Accuracy: 88.5%




ML Methodology Used”

Random Forest

A RandomForestClassifier (200 trees,
class_weight="'balanced')

Why
Simple, robust baseline.

Often surprisingly strong on small, noisy datasets
—and in our case, it ultimately outperformed the
more complex learners.

How they work
Trains many decision trees on bootstrapped
samples with random feature subsets - majority
vote

Test Accuracy: 90%



We combined the probability outputs of the tumor-
marker RF and clinical/hematology RF into a meta-
learner, allowing each model’s strengths to contribute
where they’re most informative.

By fusing across domains, we capture non-overlapping
signals (e.g. biochemical vs. hematological), improving
robustness against noise or missing patterns in any
single dataset.

UCSF Health. (2024, May 21). Taking charge: Who gets ovarian cancer? ucsfhealth.org.

ML Methodology - Random Forest Fusion

Top 20 Feature Importances Across Both Models
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Performance Metrics

Accuracy = 94% - shows good amount cases correctly
classified by the fused model.

ROC AUC = 0.92 - shows excellent overall discrimination
between benign and malignant cases.

Sensitivity = 0.89 & Specificity = 0.87 — high true-
positive rate for cancer detection, with few false alarms.

F1-Score = 0.88 — balances precision (0.90) and recall
(0.87), indicating reliable positive predictions.

RF Confusion Matrix (Clin/Hem)
Balanced Accuracy: 0.8995

Confusion Matrix (Tumor Markers Only)
Balanced Accuracy: 0.9003

Fused Model Confusion Matrix (Averaging)
Balanced Accuracy: 0.9420



Challenges & How We Tackled Them

Challenge

Small, Noisy Dataset

Class Imbalance (~52/48)

Algorithmic Complexity &
Tuning

Missing & Mixed-Type Data

Impact

Overfitting; models collapsed to chance
(=50 % balanced acc).

Tendency to predict majority class - low
sensitivity.

8—10 hyperparams per boosting model -
multi-hour grid search.

Parsing errors, feature gaps.

Mitigation

— Heavy regularization (dropout, L2, early-stop)
— Imputation with clinical priors + mean fill

— scale_pos_weight in boosting
— Class weights in DL
— Threshold optimization (0.1-0.9 scan)

— Regex-based string cleaning
— Biomarker-specific normal imputation
— Column-mean fill



Potential Applications and Impact

India Genome Project -
Enhanced risk prediction, tailored screening
protocols, development of targeted therapies, public

DEPARTMENT OF BIOTECHNOLOGY

health benefits- tailored specifically to Indian
population.

Clinical Decision Support - Enables general QU@\ A
practitioners to rapidly distinguish benign from L 0 5_2
malignant ovarian cases using fused multi-domain -@-
data, improving diagnhostic accuracy and patient =)
referral decisions. e

Screening Protocol Development - Refine screening
guidelines and protocols for early diagnosis will lead
to better quality of life due to reduced mental toll.




Plaksha Deployability

This solution enables general practitioners (GP) to
rapidly distinguish between benign and malignant
tumors, this can be implemented in our infirmary as
an assistive technology to the GP to analyse the
blood report and make classification.

Scaling Challenges

In order to use this in a fully fledged production
environment, some potential challenges and
factors to be considered are :

o Data Integration: Lab reports arrive in
different formats/units across hospitals. We
need robust parsers and unit-conversion
routines.

e Multi-Modal Fusion: To boost accuracy,
iIncorporate imaging or image derived features,
then fuse those with lab-based predictions in a
final ensemble.

e Privacy and Compliance: Handling real
patient data and complying with local health-
data regulations.



r  J. R




